Изменение белковых веществ при тепловой обработке

Как приготовить продукты питания, чтобы организм получил достаточное количество самого необходимого для него вещества

Белки являются основной составной частью всех тканей организма и каждой его клетки. Белки пищи расходуются, прежде всего, на восстановление износившихся белковых частиц в организме и на рост новых клеток. Их невозможно заменить даже потребляемыми в значительном количестве углеводами и жирами, в то время как последние могут в значительной своей части заменяться друг другом или белком.

О цепочках аминокислот начистоту

Главным источником белка в питании являются продукты животного происхождения; много белка содержат также некоторые растительные продукты. Так, например, в 100 граммах различных продуктов содержится следующее количество белка: в мясе (без костей) — около 20 г, в рыбе (без костей) — около 18 г, в яйцах — 12 г, в твороге — 15 г, в нежирном сыре — 28 г, в хлебе — 6 г, в крупе — 6,5 .г, в орехах — 12 г, в бобовых — 18 г, в сое — 40 г. По значению для организма белки делят на полноценные и неполноценные (в зависимости от содержания в них различных аминокислот).

Белки представляют собой сложные химические вещества, которые при пищеварении в кишечнике распадаются на более простые составные части — аминокислоты, всасывающиеся в кровь. Полноценными являются белки, содержащие все аминокислоты, из которых строятся белки тела человека и которые не образуются в человеческом организме. Обычно считают, что таковыми являются только белки животного происхождения. Тем не менее, советским ученым удалось доказать, что, например, белки картофеля и капусты также содержат все необходимые для организма аминокислоты. Признано, что в пищевом рационе не менее одной трети белка должно быть животного происхождения, при этом большое значение имеет разнообразие продуктов, сочетание которых обеспечивает организм всеми необходимыми аминокислотами. Так, например, сочетание гречневой каши с молоком создает наиболее благоприятный для организма аминокислотный состав; то же дает сочетание капусты, хлеба и яйца (знаменитые «бабушкины» пирожки с капустой и яйцом).

Помощь при болезнях

Здоровый взрослый человек в обычных условиях не накапливает в своем организме белка, а расходует весь белок пищевого рациона. Однако в период активного роста у подростков, при беременности, после тяжелых заболеваний, приводящих к истощению, при заживлении ран после операций организм задерживает часть белка, поступающего с пищей, используя его для нового построения тканей. В лечебном питании белок широко применяется при различных заболеваниях: так, при болезнях печени используется свойство творожного белка уменьшать вредное накопление жира в печени. Белки мяса способствуют укреплению сердечной мышцы.

Белок имеет большое значение в лечебном питании при туберкулезе, малокровии, при язвенной болезни желудка и двенадцатиперстной кишки, протекающей при явлениях истощения и витаминной недостаточности. Животный белок назначается при лечении тучности, так как он усиливает окислительные процессы в организме и тем самым способствует использованию организмом собственного жира.

Нет такого заболевания, при котором белки исключались бы полностью из пищевого рациона. При некоторых болезнях (воспаление почек и др.) применение белков резко ограничивается, но только на короткий срок. У здорового человека норма белка в пищевом рационе зависит от возраста и профессии, а у больного — от характера заболевания и состояния организма.

В детском питании норма белка колеблется от 2—2,5 до 4 г на 1 кг веса ребенка (в раннем возрасте дают наибольшее количество белка на 1 кг веса). Норма белка для взрослого не меньше 1 г на 1 кг веса; при средней физической нагрузке норма повышается до 1,5—1,8 г на 1 кг веса, т. е. до 100—110 г на день, а при тяжелом труде, требующей большого расхода сил, — до 2—2,5 г, т. е. до 140 г на день. В санаториях и домах отдыха средней нормой белка в суточном рационе считается 120— 125 г, высшей — 140—150 г. Нецелесообразно включать в рацион больше 150 г белка на длительный срок, так как это вредно отражается на нервной системе, печени, почках и на обмене веществ.

Готовим правильно!

Большое воздействие на количество и качество белков в пищевых продуктах оказывает кулинарная обработка. Для иллюстрации значения правильной кулинарной обработки для вкусовых и питательных качеств блюд приведем некоторые данные по обработке мяса.

При замораживании мяса соки выходят в межклеточные пространства; однако мышечные волокна мяса способны вновь впитать в себя эти соки, если процесс оттаивания производится постепенно. Быстрое оттаивание мяса снижает питательную ценность продукта и вкусовые свойства готовых блюд: мясо становится жестким, волокнистым и невкусным. Особенно негативно влияет оттаивание мороженого мяса в воде: потери белка становятся в 10 раз больше, чем при оттаивании мяса на воздухе, к тому же увеличиваются потери в полуфабрикатах, приготовляемых из мяса, размороженного в воде.

Потери сока, а вместе с ним и белка, достигают 10%, если мороженое мясо разрезают на небольшие куски. Таким образом, медленным оттаиванием мороженого мяса на воздухе при невысокой температуре можно в значительной мере сократить потери белка и сохранить вкусовые свойства пищи. Питательная ценность мяса снижается, а вкус блюд ухудшается, если мясо пропустить через мясорубку с тупыми ножами, так как при этом мясо не режется, а мнется и теряет сок.

Тепловая обработка значительно изменяет качество белков пищевых продуктов. При правильной тепловой обработке белковоподобные вещества соединительной ткани мяса и рыбы, состоящие из не усваиваемого организмом, нерастворимого в воде вещества — коллагена, — превращаются в усвояемый организмом, растворяющийся в воде клей — глютин; при этом истинный белок мышц делается более доступным для воздействия пищеварительных соков.

Процесс перехода нерастворимых веществ в глютин начинается при температуре продукта в 70°; он быстро происходит в нежных сортах мяса (вырезка, спинная часть), в мясе молодых животных, птиц. Значительно медленнее этот процесс происходит в более грубых сортах мяса (грудинка, шея и др.) и в мясе старых животных. Жарение, т. е. тепловая обработка при температуре около 130° без воды, грубых сортов мяса приводит к тому, что коллаген высыхает, прежде чем он переходит в глютин, и поэтому усвояемость белков мяса снижается. Такие сорта мяса необходимо тушить или варить. Переход коллагена в глютин совершается более интенсивно при кислой реакции, поэтому грубые сорта мяса и особенно мясо диких животных предварительно маринуют). Не растворимые в воде вещества рыбы быстро переходят в «клей», поэтому сроки тепловой обработки рыбы по сравнению с мясом должны быть значительно сокращены.

При тепловой обработке белки мяса, рыбы, яиц денатурируются (свертываются и становятся нерастворимыми в воде), и усвояемость их повышается. Значительно возрастает также усвояемость растительных белков при тепловой обработке, так, например, белки бобовых усваиваются в 2 раза больше (от 30 до 60%). Однако излишняя тепловая обработка или неправильный температурный режим приводит к вторичной денатурации белков, и в связи с этим их усвояемость снижается.

При жарении мяса и рыбы образуются ароматические вещества, которые повышают вкусовые свойства продукта и их усвоение. Однако если температура продукта при жарении значительно превышает 130°, то в корочке образуются химические соединения, имеющие «пригорелый» запах и вкус. Длительность жарения, температурный режим, размер обжариваемых кусков влияют на качество белков, их усвояемость и продолжительность пребывания пищи в желудке.

Варка мяса и рыбы в воде сопровождается переходом в отвар экстрактивных азотистых (белковых) веществ, которые при одних заболеваниях исключаются из пищевого рациона, а при других используются для возбуждения аппетита и усиления образования пищеварительных соков.

Варка на пару приводит к меньшему «выщелачиванию», нежели варка в воде; при тушении выщелачивание ниже, чем при варке (влияет количество жидкости); варка при температуре 85-90° после закипания воды уменьшает потерю мясом сока по сравнению с варкой при слабом кипении; варка при длительном, сильном кипении приводит ко вторичной денатурации белков (влияние температурного режима).

Таким образом, строгое соблюдение технологического режима приготовления пищи является важнейшим моментом, определяющим количество и качество белков в пищевых продуктах и в связи с этим вкусовые качества пищи и ее питательную ценность.

Изменение белковых веществ при тепловой обработке

Белки относятся к основным химическим компонентам пищи.
Они имеют и другое название — протеины, которое подчеркивает первостепенное биологическое значение этой группы веществ (от гр. protos — первый, важнейший).

Значение белков в кулинарных рецептурах.
Белки являются структурными элементами клеток; служат материалом для образования ферментов, гормонов и др.; влияют на усвояемость жиров, углеводов, витаминов, минеральных веществ и т. д.

Ежесекундно в нашем организме отмирают миллионы клеток и для восстановления их взрослому человеку требуется 80—100 г белка в сутки, причем заменить его другими веществами невозможно.

Поэтому технологи, занятые организацией питания постоянного контингента потребителей по дневным рационам (интернаты, санатории, больницы и т. д.) или скомплектованному меню отдельных приемов пищи, должны обеспечивать содержание белка в блюдах, соответствующее физиологическим потребностям человека.

Пользуясь таблицами химического состава готовых блюд, можно разработать меню рациона так, чтобы удовлетворить потребность питающихся в белках как по количеству, так и по качеству, т. е. обеспечить биологическую ценность.

Биологическая ценность белков
определяется содержанием незаменимых аминокислот (НАК), их соотношением и перевариваемостью.
Белки, содержащие все НАК (их восемь: триптофан, лейцин, изолейцин, валин, треонин, лизин, метионин, фенилаланин) и в тех соотношениях, в каких они входят в белки нашего организма, называются полноценными.

К ним относятся белки мяса, рыбы, яиц, молока.
В растительных белках, как правило, недостаточно лизина, метионина, триптофана и некоторых других НАК. Так, в гречневой крупе недостает лейцина, в рисе и пшене — лизина.
Незаменимая аминокислота, которой меньше всего в данном белке, называется лимитирующей.
Остальные аминокислоты усваиваются в адекватных с ней количествах.
Один продукт может дополнять другой по содержанию аминокислот.
Однако такое взаимное обогащение происходит только в том случае, если эти продукты поступают в организм с разрывом во времени не более чем 2—3 ч.
Поэтому большое значение имеет сбалансированность по аминокислотному составу не только суточных рационов, но и отдельных приемов пищи и даже блюд.
Это необходимо учитывать при создании рецептур блюд и кулинарных изделий, сбалансированных по содержанию НАК.

Наиболее удачными комбинациями белковых продуктов являются:

  • мука + творог (ватрушки, вареники, пироги с творогом);
  • картофель + мясо, рыба или яйцо (картофельная запеканка с мясом, мясное рагу, рыбные котлеты с картофелем и др.);
  • гречневая, овсяная каша + молоко, творог (крупеники, каши с молоком и др.);
  • бобовые с яйцом, рыбой или мясом.

Наиболее эффективное.взаимное обогащение белков достигается при их определенном соотношении, например:

  • 5 частей мяса + 10 частей картофеля;
  • 5 частей молока + 10 частей овощей;
  • 5 частей рыбы + 10 частей овощей;
  • 2 части яиц +10 частей овощей (картофеля) и т. д.

Усвояемость белков зависит от их физико-химических свойств, способов и степени тепловой обработки продуктов.

Это интересно:  Заложило нос? Выбирайте рецепт!

Например, белки многих растительных продуктов плохо перевариваются, так как заключены в оболочки из клетчатки и других веществ, препятствующих действию пищеварительных ферментов (бобовые, крупы из цельных зерен, орехи и др.).
Кроме того, в ряде растительных продуктов содержатся вещества, тормозящие действие пищеварительных ферментов (фазиолин фасоли).

По скорости переваривания на первом месте находятся белки яиц, молочных продуктов и рыбы, затем мяса (говядина, свинина, баранина) и, наконец, хлеба и крупы.

Из белков животных продуктов в кишечнике всасывается более 90% аминокислот, из растительных — 60—80%.

Размягчение продуктов при тепловой обработке и протирание их улучшает усвояемость белков, особенно растительного происхождения.
Однако при избыточном нагревании содержание НАК может уменьшиться.
Так, при длительной тепловой обработке в ряде продуктов снижается количество доступного для усвоения лизина.
Этим объясняется меньшая усвояемость белков каш, сваренных на молоке, по сравнению с белками каш, сваренных на воде, но подаваемых с молоком.
Чтобы повысить усвояемость каш, рекомендуется крупу предварительно замачивать для сокращения времени варки и добавлять молоко перед окончанием тепловой обработки.

Качество белка оценивается рядом показателей (КЭБ — коэффициент эффективности белка, ЧУБ — чистая утилизация белка и др.), которые рассматривает физиология питания.

Химическая природа и строение белков.
Белки — это природные полимеры, состоящие из остатков сотен и тысяч аминокислот, соединенных пептидной связью.
От набора аминокислот и их порядка в полипептидных цепях зависят индивидуальные свойства белков.
По форме молекулы все белки можно разделить на глобулярные и фибриллярные.
Молекула глобулярных белков по форме близка к шару, а фибриллярных имеет форму волокна.

По растворимости все белки делятся на следующие группы:

  1. растворимые в воде — альбумины;
  2. растворимые в солевых растворах — глобулины;
  3. растворимые в спирте — проламины;
  4. растворимые в щелочах — глютелины.

По степени сложности белки делятся на протеины (простые белки), состоящие только из остатков аминокислот, и протеиды (сложные белки), состоящие из белковой и небелковой частей.

Различают четыре структуры организации белка:

  1. первичная — последовательное соединение аминокислотных остатков в полипептидной цепи;
  2. вторичная — закручивание полипептидных цепей в спирали;
  3. третичная — свертывание полипептидной цепи в глобулу;
  4. четвертичная — объединение нескольких частиц с третичной структурой в одну более крупную частицу.

Белки обладают свободными карбоксильными или кислотными и аминогруппами, в результате чего они амфотерны, т. е. в зависимости от реакции среды проявляют себя как кислоты или как щелочи.
В кислой среде белки проявляют щелочные свойства, и частицы их приобретают положительные заряды, в щелочной они ведут себя как кислоты, и частицы их становятся отрицательно заряженными.

При определенном pH среды (изоэлектрическая точка) число положительных и отрицательных зарядов в молекуле белка одинаково.
Белки в этой точке электронейтральны, а их вяз¬кость и растворимость наименьшие.
Для большинства белков изоэлектрическая точка лежит в слабокислой среде.

Наиболее важными технологическими свойствам и белков являются: гидратация (набухание в воде), денатурация, способность образовывать пены, деструкция и др.

Гидратация и дегидратация белков.
Гидратацией называется способность белков прочно связывать значительное количество влаги.
Гидрофильность отдельных белков зависит от их строения.
Расположенные на поверхности белковой глобулы гидрофильные группы (аминные, карбоксильные и др.) притягивают молекулы воды, строго ориентируя их на поверхности.
В изо- электрической точке (когда заряд белковой молекулы близок к нулю) способность белка адсорбировать воду наименьшая.
Сдвиг pH в ту или иную сторону от изоэлектрической точки приводит к диссоциации основных или кислотных групп белка, увеличению заряда белковых молекул и улучшению гидратации белка.
Окружающая белковые глобулы гидратная (водная) оболочка придает устойчивость растворам белка, мешает отдельным частицам слипаться и выпадать в осадок.
В растворах с малой концентрацией белка (например, молоко) белки полностью гидратированы и связывать воду не могут.
В концентрированных растворах белков при добавлении воды происходит дополнительная гидратация. Способность белков к дополнительной гидратации имеет в технологии пищи большое значение.
От нее зависят сочность готовых изделий, способность полуфабрикатов из мяса, птицы, рыбы удерживать влагу, реологические свойства теста и т. д.

Примерами гидратации в кулинарной практике
являются: приготовление омлетов, котлетной массы из продуктов животвного происхождения, различных видов теста, набухание белко круп, бобовых, макаронных изделий и т. д.

Дегидратацией называется потеря белками связанной воды при сушке, замораживании и размораживании мяса и рыбы, при тепловой обработке полуфабрикатов и т. д.
От степени дегидратации зависят такие важные показатели, как влажность готовых изделий и их выход.

Денатурация белков.

Это сложный процесс, при котором под влиянием внешних факторов (температуры, механического воздействия, действия кислот, щелочей, ультразвука и др.) происходит изменение вторичной, третичной и четвертичной структур белковой макромолекулы, т. е. нативной (естественной) пространственной структуры.
Первичная структура, а следовательно, и химический состав белка не меняются.

При кулинарной обработке денатурацию белков чаще всего вызывает нагревание.
Процесс этот в глобулярных и фибриллярных белках происходит по-разному.
В глобулярных белках при нагревании усиливается тепловое движение полипептидных цепей внутри глобулы; водородные связи, которые удерживали их в определенном положении, разрываются и полипептидная цепь развертывается, а затем сворачивается по- новому.
При этом полярные (заряженные) гидрофильные группы, расположенные на поверхности глобулы и обеспечивающие ее заряд и устойчивость, перемещаются внутрь глобулы, а на поверхность ее выходят реакционноспособные гидрофобные группы (дисульфидные, сульфгидрильные и др.), не способные удерживать воду.

Денатурация
сопровождается изменениями важнейших свойств белка:

  • потерей индивидуальных свойств (например, изменение окраски мяса при его нагревании вследствие денатурации миоглобина);
  • потерей биологической активности (например, в картофеле, грибах, яблоках и ряде других растительных продуктов содержатся ферменты, вызывающие их потемнение, при денатурации белки-ферменты теряют активность);
  • повышением атакуемости пищеварительными ферментами (как правило, подвергнутые тепловой обработке продукты, содержащие белки, перевариваются полнее и легче);
  • потерей способности к гидратации (растворению, набуханию);
  • потерей устойчивости белковых глобул, которая сопровождается их агрегированием (свертыванием, или коагуляцией, белка).

Агрегирование — это взаимодействие денатурированных молекул белка, которое сопровождается образованием более крупных частиц.
Внешне это выражается по-разному в зависимости от концентрации и коллоидного состояния белков в растворе. Так, в малоконцентрированных растворах (до 1%) свернувшийся белок образует хлопья (пена на поверхности бульонов).
В более концентрированных белковых растворах (например, белки яиц) при денатурации образуется сплошной гель, удерживающий всю воду, содержащуюся в коллоидной системе.
Белки, представляющее собой более или менее обводненные гели (мышечные белки мяса, птицы, рыбы; белки круп, бобовых, муки после гидратации и др.), при денатурации уплотняются, при этом происходит их дегидратация с отделением жидкости в окружающую среду.
Белковый гель, подвергнутый нагреванию, как правило, имеет меньшие объем, массу, большие механическую прочность и упругость по сравнению с исходным гелем нативных (натуральных) белков.

Скорость агрегирования золей белка зависит от pH среды.
Менее устойчивы белки вблизи изоэлектрической точки.
Для улучшения качества блюд и кулинарных изделий широко используют направленное изменение реакции среды.
Так, при мариновании мяса, птицы, рыбы перед жаркой; добавлении лимонной кислоты или белого сухого вина при припускании рыбы, цыплят; использовании томатного пюре при тушении мяса и др. создают кислую среду со значениями pH значительно ниже изоэлектрической точки белков продукта.
Благодаря меньшей дегидратации белков изделия получаются более сочными.

Фибриллярные белки денатурируют иначе: связи, которые удерживали спирали их полипептидных цепей, разрываются, и фибрилла (нить) белка сокращается в длину.
Так денатурируют белки соединительной ткани мяса и рыбы.

Деструкция белков. При длительной тепловой обработке белки подвергаются более глубоким изменениям, связанным с разрушением их макромолекул. На первом этапе изменений от белковых молекул могут отщепляться функциональные группы с образованием таких летучих соединений, как аммиак,сероводород, фосфористый водород, углекислый газ и др. Накапливаясь в продукте, они участвуют в образовании вкуса и аромата готовой продукции.
При дальнейшей гидротермической обработке белки гидролизуются, при этом первичная (пептидная) связь разрывается с образованием растворимых азотистых веществ небелкового характера (например, переход коллагена в глютин).

Деструкция белков может быть целенаправленным приемом кулинарной обработки, способствующим интенсификации технологического процесса (использование ферментных препаратов для размягчения мяса, ослабления клейковины теста, получение белковых гидролизатов и др.).

Пенообразование.
Белки в качестве пенообразователей широко используют при производстве кондитерских изделий (тесто бисквитное, белково-взбивное), взбивании сливок, сметаны, яиц и др.
Устойчивость пены зависит от природы белка, его концентрации, а также температуры.
Важны и другие технологические свойства белков.
Так, их используют в качестве эмульгаторов при производстве белково-жировых эмульсий, как наполнители для различных напитков.
Напитки, обогащенные белковыми гидролизатами (например, соевыми), обладают низкой калорийностью и могут храниться длительное время даже при высокой температуре без добавления консервантов.
Белки способны связывать вкусовые и ароматические вещества.
Этот процесс обусловливается как химической природой этих веществ, так и поверхностными свойствами белковой молекулы, факторами окружающей среды.
При длительном хранении происходит “старение” белков, при этом снижается их способность к гидратации, удлиняются сроки тепловой обработки, затрудняется разваривание продукта (например, варка бобовых после длительного хранения).
При нагревании с восстанавливающими сахарами белки образуют меланоидины

Изменение белковых веществ в пищевых продуктах при тепловой обработке

Правильно проведенная тепловая обработка, как правило, повышает пищевую ценность продуктов питания в результате улучшения их вкусовых качеств и усвояемости. Кроме того, теп­ловое воздействие обеспечивает санитарное благополучие пищи.

Для рекомендации наиболее целесообразного способа тепло­вой обработки того или иного продукта и получения готового кулинарного изделия с заданными свойствами необходимо знать, какие физико-химические изменения протекают в продуктах.

Однако поскольку пищевые продукты являются сложными композициями, состоящими из многих веществ (белки, жиры, углеводы, витамины и др.), целесообразно предварительно рас­смотреть изменения каждого из них в отдельности.

Изменения белковых веществ

При тепловой обработке продуктов входящие в их состав белковые системы подвергаются различным изменениям.

Нарушение нативной вторичной и третичной структур белков носит название «денатурации белков». Денатурация белков мо­жет произойти вследствие нагревания, механического воздей­ствия (при взбивании), увеличения концентрации солей в си­стеме (при замораживании, посоле, сушке продуктов) и некото­рых других факторов.

Глубина нарушения структуры белков зависит от интенсивности воздействия различных факторов, воз­можности одновременного действия нескольких из них, концен­трации белков в системе, pH среды, влияния различных добавок.

Денатурация белков влечет за собой изменение их гидратационных свойств — водосвязывающей способности, которая оп­ределяет вкусовые качества готовых изделий.

При денатурации растворимых белков их водосвязывающая способность понижа­ется в разной степени, что зависит от глубины денатурационных изменений. Правильное регулирование факторов, определяющих денатурацию и гидратационные свойства белков при технологи­ческом процессе, позволяет получать кулинарные изделия высо­кого качества.

Так, на практике часто используют зависимость денатурации и водосвязывающей способности белков от pH среды. Денатурация мышечных белков мяса и рыбы при pH среды, близком к изоэлектрической точке, происходит при более низких температурах и сопровождается значительной потерей воды.

Поэтому путем подкисления белковых систем при некото­рых способах обработки рыбы и мяса (маринование и др.) со­здают условия для снижения глубины денатурации белков при тепловой обработке.

Одновременно кислая среда способствует денатурации и дезагрегаций соединительнотканого белка кол­лагена и образованию продуктов с повышенной влагоудержи­вающей способностью. В результате сокращается время тепло­вой обработки продуктов, а готовые изделия приобретают соч­ность и хороший вкус.

Это интересно:  Выбираем шампунь для волос правильно: читаем состав

При денатурации изменяется также физическое состояние белковых систем, которое обычно определяют термином «свертывание белков». Свертывание различных белковых систем имеет свою специфику.

В одних случаях свернувшиеся белки вы­деляются из системы в виде хлопьев или сгустков (образование пены при варке бульонов, варенья), в других — происходит уплот­нение белковой системы с выпрессовыванием из нее части воды вместе с растворенными в ней веществами (производство тво­рога из простокваши) или увеличение прочности системы без уплотнения и выделения влаги (свертывание яичных белков).

Наряду с физическими изменениями при нагревании белко­вых систем происходят сложные химические изменения в самих белках и во взаимодействующих с ними веществах.

Белки овощей и фруктов

Количество белковых веществ в овощах и фруктах не превышает 2—2,5%. Белки являются ос­новными структурными элементами цитоплазмы, ее органоидов и ядер растительных клеток.

При тепловой обработке белки цитоплазмы свертываются и образуют хлопья; клеточная мембранная структура разруша­ется. Ее разрушение способствует диффузии растворенных в кле­точном соке веществ в бульон или другую жидкость, в которой овощи подвергались тепловой обработке или хранились, и проникновению в них веществ, растворенных в бульоне или другой жидкости.

Белки зерномучных продуктов

Горох, фасоль, чечевица со­держат около 20—23% белковых веществ, соя — 30%. В крупах их количество достигает 11%, а в пшеничной муке высшего и первого сортов— 1012%.

В зерномучных продуктах белки находятся в обезвоженном состоянии, поэтому при замачивании зернобобовых, варке круп или замешивании теста они способны поглощать влагу и набу­хать.

При нагревании до 50—70° С набухшие белки свертыва­ются и выпрессовывают часть поглощенной влаги, которая свя­зывается клейстеризующимся крахмалом.

Используемое в кулинарной практике пассерование пшенич­ной муки с жиром или без него при температуре 120° С и выше оказывает влияние па содержащиеся в ней белки, которые дена­турируются и утрачивают способность к набуханию и образова­нию клейковины.

Белки куриного яйца

Яичный белок содержит 11 —12% бел­ковых веществ, желток—15—16%. При температуре 50—55° С яичный белок начинает свертываться, что проявляется в виде местных помутнений, которые при дальнейшем повышении тем­пературы распространяются на весь объем; по достижении 80° С свернувшийся белок сохраняет свою форму.

Дальнейший нагрев увеличивает прочность белковой системы, и особенно заметно в интервале температур от 80 до 85° С. По достижении 95— 100° С прочность белка с течением времени изменяется незна­чительно.

Яичный желток свертывается при более высоких температу­рах. Для увеличения его вязкости желток необходимо нагреть до 70°С.

Смесь белка с желтком проявляет себя, аналогично желтку. Свернувшийся белок, желток или их смесь удерживает влагу в связанном состоянии и не выпрессовывает ее. Характер свер­тывания яичных белков не изменяется, если их разбавить неко­торым количеством воды и смесь тщательно перемешать, однако механическая прочность системы понижается.

Способность яичных белков связывать при свертывании влагу используют в кулинарной практике. Добавление к белкам яиц, воды или молока при изготовлении омлетов позволяет понижать механическую прочность белковых систем и получать кулинар­ные изделия с более нежным вкусом, чем изделия из натураль­ных яиц.

Механические свойства свернувшихся яичных белков исполь­зуют также для структирования (связи) некоторых кулинарных изделий (овощные котлеты и др.).

Белки молока

Основными белками молока являются казеин (2,3—3,0%), лактальбумин (0,5—1,0%) и лактоглобулин (0,1%).

При нагревании молока с нормальной кислотностью замет­ные изменения наблюдаются только с альбумином, который свертывается и осаждается в виде хлопьев на стенках посуды. Процесс начинается при температуре 60° С и заканчивается практически при 85° С.

Нагревание молока фактически не оказывает влияния на рас­творимость казеина: лишь небольшое количество его в нераство­римой форме присутствует в образующейся на молоке пенке. В сквашенном молоке нагревание вызывает свертывание ка­зеина и разделение системы на две фракции: творог (свернувшийся­ казеин) и сыворотку.

Казеин свертывается также при на­гревании молока с повышенной кислотностью. Творог при нагре­вании выделяет часть влаги. Для связи ее в кулинарные изделия из творога добавляют крупу или муку.

Белки мяса, птицы, рыбы

Технологическая обработка ука­занных продуктов в значительной степени обусловлена морфоло­гическим строением и составом их белковых систем.

Особенности строения и состава мышечной ткани. Основную массу перерабатываемого в кулинарной практике мяса составляет скелетная мускулатура. Отдельные скелетные мышцы состоят из мышечных волокон, соединенных в единое целое соединительноткаными прослойками.

Мышечное волокно представляет собой специализированную сократительную клетку, длина которой может достигать 12 см и более, а толщина до 120 мм. Содержимое волокна состоит из двух частей: жидкой (гомогенной) — саркоплазмы и студенистой (в виде студнеобразных нитей)—миофибрилл. Снаружи во­локно покрыто оболочкой — сарколеммой (рис. 3).

В мышцах волокна собраны в пучки: первичные, состоящие из мышечных волокон; вторичные, состоящие из первичных пуч­ков; пучки высшего порядка, которые составляют мышцу.

Белки, входящие в состав мышечных волокон мяса, птицы, рыбы, называются мышечными. Часть из них в жидком состоя­нии содержится в саркоплазме, в том числе белок миоглобин, который окрашивает мясо в красный цвет, часть в студнеобразном состоянии входит в состав миофибрилл. Содержание белков в некоторых мясных и рыбных продуктах при­ведено в табл. 12.

Мясо баранины (1-й категории) и свинины за счет повышенного количества жира содержит относительно меньше белков, чем говядина.

Мышечные белки имеют высокую биологи­ческую ценность: соотношение незаменимых аминокислот в них близко к оптимальному. Содержание мышечных белков в ске­летной мускулатуре крупного рогатого скота 1-й категории составляет в среднем 13,4% с колебаниями от 6,1 до 14,3% в различных частях туши (рис. 4).

Рис. 3. Схема строения мышечного волокна:
1 — миофибрилла; 2 — саркоплазма; 3 — ядро Рис. 4. Содержание мышечных белков в раз¬личных частях туши крупного рогатого скота

Соединительная ткань мышцы называется мизием. Та ее часть, которая соединяет мышечные волокна в первичных пучках, называется эндомизием, объединяющая пучки мышеч­ных волокон между собой — пер им из и ем, а наружная обо­лочка мышцы — эпимизием

Важными компонентами соединительной ткани являются фибриллярные белки — коллаген и эластин.

Посредством рентгеноструктурного анализа установлено, что молекула коллагена состоит из трех полипептидных цепочек (триплет), скрученных вместе вокруг общей оси.

Прочность тройной спирали обусловлена главным образом водородными связями. Отдельные молекулы коллагена и эластина образуют волокна. В свою очередь, пучки коллагеновых и эластиновых во­локон совместно с веществом, объединяющим их в единое целое и состоящим из белково-полисахаридного комплекса, образуют пленки эндомизия и перимизия.

Рис. 5. Микроскопический препарат грудного мускула крупного рогатого скота. Видны про¬слойки эндомизия между мышечными волок¬нами и прослойки перимизия между их пучками

Строение эндомизия практически не зависит от сократитель­ной способности мышцы и характера выполняемой ею работы. Входящий в его состав коллаген образует очень тонкие и слегка волнистые волокна. Эластин в эндомизии развит слабо.

На строение перимизия большое влияние оказывает харак­тер выполняемой мышцами работы. В мускулах, которые при жизни животного испытывали небольшие нагрузки, перимизий по строению близок к эндомизию.

Перимизий мускулатуры, вы­полняющей тяжелую работу, имеет более сложное строение: увеличено количество эластиновых волокон, коллагеновые пучки толще, в перимизии некоторых мышц волокна перекрещены и образуют сложное ячеистое плетение. В мышцах увеличено про­центное содержание соединительной ткани.

Таблица 13.Примерное соотношение (по триптофану) незаменимых аминокислот в мышечных белках некоторых продуктов

Таким-образом, соединительная ткань эндомизия и перими­зия образует своеобразный остов или каркас мышечной ткани, в который включены мышечные волокна. Характер этого остова и определяет механические свойства, или, как принято говорить, «жесткость» или «нежность» мяса.

Содержание и характер строе­ния соединительной ткани обусловливают тот или иной способ обработки мяса.

В среднем большая часть мускулатуры крупного скота со­держит от 2 до 2,9% коллагена, однако количество его в различных частях туши весьма неодинаково (рис. 6).

Рис. 6. Содержание коллагена (к) и эластина (э) в различных частях туши крупного рогатого скота

У мелкого скота различие в строении перимизия у разных частей туши выражено в значительно меньшей степени, чем у крупного скота, и, кроме того, перимизий имеет более простое строение. К особенностям анатомического строения мускульной ткани птицы следует отнести невысокое содержание и лабильность соединительной ткани.

Мышечная ткань рыбы также состоит из мышечных волокон и соединительной ткани, но имеет свои особенности. Мышечные волокна у нее объединены перимизием в зигзагообразные миокомы, которые с помощью соединительнотканых прослоек (септ) формируют продольные мышцы тела. Септы бывают попереч­ными и продольными (рис. 7).

Подобно мышечной ткани теплокровных животных, мускула­тура рыб, имеющая повышенную нагрузку (мышцы, прилегаю­щие к голове и хвосту), содержит более развитую соединитель­ную ткань, однако вследствие ее невысокой прочности рыбу при разделке делят по сортам и кулинар­ному назначению, как это принято для мяса убойных животных. Основным бел­ком соединительной ткани рыб является коллаген (от 1,6 до 5,1%), эластина в ней очень мало.

Помимо мышечной ткани, коллаген в значительных количествах входит в со­став органического вещества хрящей, костей, кожи и чешуи. Так, его содержа­ние в костях достигает 10—20%, в су­хожилиях —25—35 %. Коллаген, содержа­щийся в костях, называется оссеином.

Как белок, коллаген имеет низкую биологическую ценность, так как практи­чески лишен триптофана и содержит очень мало метионина; в его составе преобладают гликокол, пролин и оксипролин.

Основными компонентами мяса разных видов животных яв­ляются (в %): вода —48—80, белки—15—22, жиры—1—37, экстрактивные вещества—1,5—2,8 и минеральные вещества — 0,7—1,5.

Количество воды зависит от возраста животного и содержа­ния в мясе жира. Чем моложе животное и чем меньше в его мясе жира, тем больше в мышцах влаги.

Большая часть влаги (около 70%) связана в мышцах с белками миофибрилл. Меньшее ко­личество влаги с растворенными в ней белками, экстрактив­ными и минеральными веществами содержит саркоплазма мышечных волокон. Некоторое количество влаги содержится в меж­клеточных полостях мышечной ткани.

Экстрактивные вещества являются продуктами метаболизма. Они состоят из аминокислот, дипептидов, глюкозы, некоторых органических кислот и др. Экстрактивные вещества и продукты их превращения участвуют в создании свойственного мясу вкуса и аромата.

Рис. 7. Схема строения мышечной ткани рыбы: 1 — мышечные волокна (на¬правление их показано штрихами); 2 — миокоммы; 3 — поперечные септы; 4 — продольные септы

Так, растворы глутаминовой кислоты и ее солей об­ладают мясным вкусом, поэтому глутамат натрия используют в качестве одного из компонентов сухих супов, соусов и других концентратов. Такие аминокислоты, как серии, аланин, глицин, имеют сладкий вкус, лейцин — слегка горьковатый и т. д.

При нагревании экстрактивные вещества подвергаются раз личным химическим изменениям — реакциям меланоидинообразования, окисления, гидролитическому расщеплению и др. Образующиеся при этом вещества также принято рас­сматривать как экстрактивные: их вкус, запах и цвет оказы­вают влияние на органолептические показатели, готовой про­дукции.

Экстрактивные вещества мышечной ткани рыбы значительно отличаются по составу от экстрактивных веществ мяса. В ней мало глутаминовой кислоты и больше гистидина, фенилаланина, триптофана, цистина и цистеина. Принято считать, что вкус и запах рыбы обусловлены главным образом азотистыми основ­ниями экстрактивных веществ, которых особенно много в мор­ской рыбе и мало или совершенно не содержится в мясе назем­ных животных.

Это интересно:  Бодифлекс с Мариной Корпан для начинающих все видео уроки

Среди минеральных веществ мышечной ткани наземных жи­вотных и рыбы значительный удельный вес приходится на соли натрии, калия, кальции и магния.

Изменение белков при тепловой обработке

При тепловой обработке мышечные и соединительнотканые белки претерпевают значительные изме­нения.

Мышечные белки мяса и рыбы начинают денатурироваться и свертываться при температуре около 40° С. При этом содержимое мышечных волокон уплотняется, так как из них выделяется влага с растворенными в ней минеральными, экстрактивными веществами и неденатурированными при данной температуре растворимыми белками.

Выделение влаги и уплотнение мышеч­ных волокон увеличивает их прочность: они труднее режутся и разжевываются.

Если мясо или рыбу нагревают в воде, то перешедшие в нее белки по достижении соответствующих температур денатурируются и свертываются в виде хлопьев, образуя так называемую пену.

Около 90% растворимых белков мяса и рыбы денатуриру­ется при температурах 60—65° С. При этих температурах диа­метр мышечных волокон в говядине сокращается на 12—16% от первоначальной величины. Последующее повышение темпера туры влечет за собой дополнительные потери влаги, уплотнение мышечных волокон и повышение их прочности.

При тепловой обработке мяса происходит денатурация белка миоглобина, который определяет окраску мяса. Денатурация миоглобина сопровождается изменением цвета мышечной ткани, что позволяет косвенно судить о кулинарной готовности мяса.

Красную окраску мясо сохраняет при температуре до 60° С, при 60—70° С оно окрашивается в розовый цвет, а при 70—80° С становится серым. Доведенное до кулинарной готовности мясо сохраняет серый цвет или приобретает коричневую окраску.

Нагревание соединительной ткани вызывает дезагрегацию содержащегося в ней коллагена и изменяет структуру самой ткани. Начальным этапом этого процесса является денатурация коллагена и нарушение фибриллярной структуры белка, кото­рые определяют термином «сваривание коллагена».

Темпера­тура денатурации или сваривания коллагена тем выше, чем больше в нем содержится пролина и оксипролина. Для мяса сваривание наблюдается при температуре около 65° С, для ры­бы —около 40° С.

При этих температурах происходит частичный разрыв поперечных связей между полипептидными цепочками молекул фибриллярного белка. В результате цепи сокращаются и принимают энергетически более выгодное свернутое поло­жение.

В выделенных из соединительной ткани коллагеновых волок­нах сваривание коллагена происходит при определенных температурах и имеет характер скачка. В пленках перимизия свари­вание коллагена растянуто в температурном интервале. Процесс начинается при указанных выше температурах и заканчивается при более высоких, причем температура тем выше, чем сложнее строение соединительной ткани.

Изменения на молекулярном уровне влекут за собой изме­нения структуры коллагеновых волокон и соединительнотканых прослоек. Волокна коллагена деформируются, изгибаются, длина их сокращается и они становятся более эластичными и прозрачно-стекловидными.

Изменяется и структура самих со­единительнотканых прослоек: они также деформируются, уве­личиваются в толщину, становятся более эластичными и про­зрачно-стекловидными.

Сваривание коллагена сопровождается поглощением им не­которого количества влаги и увеличением объема соединительнотканых прослоек. Сжатие соединительнотканых прослоек в значительной степени способствует выпрессовыванию из мы­шечной ткани жидкости, выделяемой при денатурации и свер­тывании мышечных белков.

При дальнейшем нагреве соединительной ткани происходит частичный или полный разрыв поперечных связей между поли пептидными цепочками денатурированного коллагена, при этом часть из них переходит в бульон, образуя раствор желатина; структура соединительнотканых прослоек в значительной сте­пени нарушается, а прочность их снижается.

Ослабление прочности перимизия является одним из факто­ров, определяющих готовность мяса. Мясо, достигшее готовности, не должно оказывать значительного сопротивления разрезанию или раскусыванию его вдоль мышечных волокон.

Подобно температуре сваривания, скорость дезагрегации коллагена зависит от строения перимизия. Так, за 20 мин варки в поясничной мышце, перимизий которой слабо развит, дезагре­гировалось и перешло в бульон 12,9% коллагена, а в грудной мышце с более грубым перимизием при тех же условиях дез­агрегировалось только 3,3% коллагена.

За 60 мин варки эти цифры увеличились: для поясничной мышцы до 48,3%, для груд­ной— лишь до 17,1 Незначительное влияние на скорость дезагрегации коллагена и размягчение перимизия оказывает температура, при которой осуществляется процесс тепловой обработки.

Например, при варке плечевой мышцы при температуре 120° С (в автоклаве) количество дезагрегированного коллагена вдвое превышает содержание его в аналогичной мышце, которая варилась обыч­ным способом при температуре 100° С.

Однако необходимо за­метить, что при увеличении температуры варки одновременно с сокращением срока тепловой обработки происходит излишнее уплотнение мышечных белков, что отрицательно сказывается на консистенции и вкусе мяса.

При использовании для жаренья мышц со сложным перимизнем мясо обрабатывают кислотами (маринование) или фер­ментными препаратами. Для маринования обычно используют лимонную или уксусную кислоту. В маринованном мясе заметно ускоряются дезагрегация коллагена и ослабление перимизия.

Жареные изделия получаются сочными, с хорошим вкусом.

В качестве размягчителей мяса успешно используются протеолитические ферменты растительного, животного и микробиального происхождения: фицин (из инжира), папаин (из дын­ного дерева), трипсин (животного происхождения) и др.

Препараты ферментов представляют собой порошки, пасты или растворы, которыми тем или иным способом обрабатывают мясо (смачивают, намазывают, шприцуют). Часто мясо перед обработкой ферментами подвергают рыхлению .

Тепловая обработка незначительно понижает прочность эластиновых волокон, поэтому мышечная ткань с повышенным содержанием эластина (шея, пашина) после тепловой обработки остается жесткой и ее используют главным образом для приго­товления котлетной массы.

ИЗМЕНЕНИЕ БЕЛКОВ ПРИ ТЕПЛОВОЙ ОБРАБОТКЕ

Рыбу и гидробионтов подвергают всем известным способам тепловой кулинарной обработки. Характер происходящих при этом физико-химических процессов у белков такой же, как и в мясе убойного скота: денатурация, дегидратация и деструкция. Кроме этого в результате тепловой обработки происходят и другие изменения: плавление жира, переход в окружающую среду водорастворимых веществ, уменьшение массы продукта, образование новых вкусовых и ароматических веществ, изменение цвета покровной и мускульной тканей.

Потери массы при тепловой обработке рыбы составляют 18…20%, что вдвое меньше по сравнению с мясом КРС. Основной удельный вес в этих потерях принадлежит воде, отделяемой белками. Потеря воды в мясе животных происходит в течение всего периода нагревания, в то время как отделение воды белками рыбы заканчивается при 65° С.

Сравнительно небольшие потери воды мышечной тканью рыб при тепловой обработке объясняются особенностью ее химического состава и гистологического строения: высокой концентрацией миозинов в миофибриллах мышечных волокон; простым строением внутримышечной соединительной ткани; низкой температурой денатурации и деструкции коллагена соединительнотканных прослоек. Тепловая денатурация мышечных белков рыбы сопровождается малой их дегидратацией. Вода, отделяемая белками миофибрилл и поступающая в пространство между пучками мышечных волокон, слабо выпрессовывается в окружающую среду из-за незначительной деформации соединительнотканных образований мышц и сравнительно быстрой желатинизацией коллагена. В результате мясо рыб при тепловой обработке теряет не более 25% содержащейся в нем воды. Поэтому по органолептической оценке мясо рыб более сочное, чем убойного скота, птицы и дичи.

Потери массы рыбы в некоторой степени зависят от вида тепловой обработки, наличия панировки. Так, при варке, жарении, обработке в поле СВЧ потери практически одинаковы с разницей в 1…2%. Панированные изделия отделяют меньше влаги, чем непанированные. Жаренье в поле ИК-излучений сопровождается меньшими потерями массы (на 4…5%), что объясняется сокращением продолжительности тепловой обработки.

Изменения белков протекают в направлении: значительного уменьшения количества растворимых миофибриллярных белков и менее значительного уменьшения количества растворимых белков саркоплазмы; роста количества денатурированных белков в 3…3,5 раза; уменьшения относительного количества белков стромы в связи с деструкцией некоторого количества коллагена; значительного увеличения содержания небелковых азотистых веществ. Последнее свидетельствует о деструкции некоторого количества мышечных белков.

В процессе варки и припускания рыбы образуется бульон в результате перехода из рыбы в воду белков, а также минеральных и экстрактивных веществ. Переход растворимых веществ из рыбы происходит в результате отделения денатурирующимися мышечными белками воды с растворенными в ней экстрактивными и минеральными веществами, а также в результате диффузии. Общее количество растворенных веществ составляет 1,5…2,0%, из них белков — 0,8…1,0%, которые представлены глютином, альбуминами и продуктами их гидролиза.

Белки оболочек мышечных волокон (сарколемма) очень устойчивы, и даже при длительном нагревании при температуре 120°С структура их не нарушается. Поэтому после тепловой обработки мышечные волокна сохраняются и разваренное мясо можно разобрать на пучки или отдельные мышечные волокна.

Белки саркоплазмы, находящиеся в растворе, денатурируют и образуют сплошной гель (студень), так как концентрация их велика. Процесс этот начинается уже при температуре 30-35°С, а при температуре 65°С денатурирует около 90% всех белков саркоплазмы.

Белки миофибрилл, находящиеся в виде геля, при нагревании уплотняются и от их студня отделяется значительная часть воды вместе с растворимыми в ней веществами. Часть этой влаги пере ходит в пространство между волокнами. В результате этого диаметр мышечных волокон уменьшается, они делаются плотнее и усилие, необходимое для их разрезания, возрастает.

Коллагеновые волокна соединительной ткани при денатурации сокращаются в длину почти на 50%. Процесс этот называется свариванием коллагена. В результате уменьшаются геометрические размеры кусков мйса и вода вместе с растворимыми в ней веществами выпрессовывается из мяса во внешнюю среду (бульон) или выделяется в виде сока («сочка»). Это приводит к изменению массы полуфабрикатов.

При дальнейшем нагревании коллагеновые волокна набухают, распадаются на отдельные полипептидные цепи, из которых волокна состояли, и образуется глютин или желатин. Желатин в отличие от коллагена растворим в горячей воде. Поэтому связь между мышечными волокнами и их пучками ослабляется и мясо размягчается. При набухании коллагеновых волокон они поглощают часть влаги, выделяемой мышечными волокнами, но не полностью.

Скорость перехода коллагена в глютин (желатин) зависит от температуры: чем она выше, тем этот процесс идет быстрее. Особенно быстро он проходит при температуре 100°С и выше.

Значительно ускоряется переход коллагена в глютин в присутствии кислот. На этом основаны маринование мяса перед жаркой и тушение его с кислыми соусами.

Белки, находящиеся в продуктах в виде раствора, при варке свертываются хлопьями и образуют пену на поверхности бульона. Коллаген и эластин соединительной ткани превращаются в глютин (желатин). Общие потери белка при тепловой обработке составляют от 2 до 7%.

Превышение температуры и времени обработки способствует уплотнению мышечных волокон и ухудшению консистенции изделий, особенно приготовленных из печени, сердца и морепродуктов. При сильном нагреве на поверхности продукта происходит деструкция крахмала, и идут реакции между сахарами и аминокислотами с образованием меланоидов, которые придают корочке темный цвет, специфический аромат и вкус.

Мясопродукты при варке и жаренье в результате уплотнения белков, плавления жира и перехода в окружающую среду влаги и растворимых веществ теряют до 30-40% массы. Наименьшие потери свойственны панированным изделиям из котлетной массы, так как выпрессованная белками влага удерживается наполнителем (хлебом), а слой панировки препятствует ее испарению с обжариваемой поверхности.

Статья написана по материалам сайтов: www.km.ru, xn—-7sbbhn4brhhfdm.xn--p1ai, chudoogorod.ru, vuzlit.ru.

«

Помогла статья? Оцените её
1 Star2 Stars3 Stars4 Stars5 Stars
Загрузка...
Добавить комментарий